MakeItFrom.com
Menu (ESC)

SAE-AISI 4028 Steel vs. 6016 Aluminum

SAE-AISI 4028 steel belongs to the iron alloys classification, while 6016 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 4028 steel and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 190
55 to 80
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 14 to 23
11 to 27
Fatigue Strength, MPa 180 to 330
68 to 89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 310 to 380
130 to 170
Tensile Strength: Ultimate (UTS), MPa 490 to 630
200 to 280
Tensile Strength: Yield (Proof), MPa 260 to 520
110 to 210

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1420
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 49
190 to 210
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
48 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.5
8.2
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 47
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 95
29 to 47
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 720
82 to 340
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 17 to 22
21 to 29
Strength to Weight: Bending, points 18 to 21
29 to 35
Thermal Diffusivity, mm2/s 13
77 to 86
Thermal Shock Resistance, points 16 to 20
9.1 to 12

Alloy Composition

Aluminum (Al), % 0
96.4 to 98.8
Carbon (C), % 0.25 to 0.3
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 98.1 to 98.7
0 to 0.5
Magnesium (Mg), % 0
0.25 to 0.6
Manganese (Mn), % 0.7 to 0.9
0 to 0.2
Molybdenum (Mo), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
1.0 to 1.5
Sulfur (S), % 0.035 to 0.050
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15