MakeItFrom.com
Menu (ESC)

SAE-AISI 4028 Steel vs. C89320 Bronze

SAE-AISI 4028 steel belongs to the iron alloys classification, while C89320 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4028 steel and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 14 to 23
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 490 to 630
270
Tensile Strength: Yield (Proof), MPa 260 to 520
140

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
930
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 49
56
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
15
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
15

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
37
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.5
3.5
Embodied Energy, MJ/kg 19
56
Embodied Water, L/kg 47
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 95
38
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 720
93
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17 to 22
8.5
Strength to Weight: Bending, points 18 to 21
10
Thermal Diffusivity, mm2/s 13
17
Thermal Shock Resistance, points 16 to 20
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Carbon (C), % 0.25 to 0.3
0
Copper (Cu), % 0
87 to 91
Iron (Fe), % 98.1 to 98.7
0 to 0.2
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.7 to 0.9
0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 0.3
Silicon (Si), % 0.15 to 0.35
0 to 0.0050
Sulfur (S), % 0.035 to 0.050
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5