MakeItFrom.com
Menu (ESC)

SAE-AISI 4118 Steel vs. EN 1.6554 Steel

Both SAE-AISI 4118 steel and EN 1.6554 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4118 steel and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
230 to 280
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
17 to 21
Fatigue Strength, MPa 230
380 to 520
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 500
780 to 930
Tensile Strength: Yield (Proof), MPa 320
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
3.4
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
1.7
Embodied Energy, MJ/kg 20
22
Embodied Water, L/kg 49
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 280
810 to 1650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
27 to 33
Strength to Weight: Bending, points 18
24 to 27
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 15
23 to 27

Alloy Composition

Carbon (C), % 0.18 to 0.23
0.23 to 0.28
Chromium (Cr), % 0.4 to 0.6
0.7 to 0.9
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.5 to 98.4
94.6 to 97.3
Manganese (Mn), % 0.7 to 0.9
0.6 to 0.9
Molybdenum (Mo), % 0.2 to 0.3
0.2 to 0.3
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0.15 to 0.35
0 to 0.6
Sulfur (S), % 0 to 0.040
0 to 0.025
Vanadium (V), % 0
0 to 0.030