MakeItFrom.com
Menu (ESC)

SAE-AISI 4140 Steel vs. CC763S Brass

SAE-AISI 4140 steel belongs to the iron alloys classification, while CC763S brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4140 steel and the bottom bar is CC763S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 310
130
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 26
7.3
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 690 to 1080
490
Tensile Strength: Yield (Proof), MPa 590 to 990
270

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 420
140
Melting Completion (Liquidus), °C 1460
870
Melting Onset (Solidus), °C 1420
830
Specific Heat Capacity, J/kg-K 470
400
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
29
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
32

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.5
2.9
Embodied Energy, MJ/kg 20
49
Embodied Water, L/kg 51
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 180
30
Resilience: Unit (Modulus of Resilience), kJ/m3 920 to 2590
340
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 25 to 38
17
Strength to Weight: Bending, points 22 to 30
17
Thermal Shock Resistance, points 20 to 32
16

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.5
Antimony (Sb), % 0
0 to 0.080
Carbon (C), % 0.38 to 0.43
0
Chromium (Cr), % 0.8 to 1.1
0
Copper (Cu), % 0
56.5 to 67
Iron (Fe), % 96.8 to 97.8
0.5 to 2.0
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0.75 to 1.0
1.0 to 3.5
Molybdenum (Mo), % 0.15 to 0.25
0
Nickel (Ni), % 0
0 to 2.5
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
18.9 to 41