SAE-AISI 4140 Steel vs. C48500 Brass
SAE-AISI 4140 steel belongs to the iron alloys classification, while C48500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 4140 steel and the bottom bar is C48500 brass.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
100 |
Elongation at Break, % | 11 to 26 | |
13 to 40 |
Poisson's Ratio | 0.29 | |
0.31 |
Shear Modulus, GPa | 73 | |
39 |
Shear Strength, MPa | 410 to 660 | |
250 to 300 |
Tensile Strength: Ultimate (UTS), MPa | 690 to 1080 | |
400 to 500 |
Tensile Strength: Yield (Proof), MPa | 590 to 990 | |
160 to 320 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
170 |
Maximum Temperature: Mechanical, °C | 420 | |
120 |
Melting Completion (Liquidus), °C | 1460 | |
900 |
Melting Onset (Solidus), °C | 1420 | |
890 |
Specific Heat Capacity, J/kg-K | 470 | |
380 |
Thermal Conductivity, W/m-K | 43 | |
120 |
Thermal Expansion, µm/m-K | 13 | |
21 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.3 | |
26 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.4 | |
29 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.4 | |
23 |
Density, g/cm3 | 7.8 | |
8.1 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
2.7 |
Embodied Energy, MJ/kg | 20 | |
46 |
Embodied Water, L/kg | 51 | |
330 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 74 to 180 | |
56 to 140 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 920 to 2590 | |
120 to 500 |
Stiffness to Weight: Axial, points | 13 | |
7.1 |
Stiffness to Weight: Bending, points | 24 | |
19 |
Strength to Weight: Axial, points | 25 to 38 | |
14 to 17 |
Strength to Weight: Bending, points | 22 to 30 | |
15 to 17 |
Thermal Diffusivity, mm2/s | 12 | |
38 |
Thermal Shock Resistance, points | 20 to 32 | |
13 to 17 |
Alloy Composition
Carbon (C), % | 0.38 to 0.43 | |
0 |
Chromium (Cr), % | 0.8 to 1.1 | |
0 |
Copper (Cu), % | 0 | |
59 to 62 |
Iron (Fe), % | 96.8 to 97.8 | |
0 to 0.1 |
Lead (Pb), % | 0 | |
1.3 to 2.2 |
Manganese (Mn), % | 0.75 to 1.0 | |
0 |
Molybdenum (Mo), % | 0.15 to 0.25 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0 |
Silicon (Si), % | 0.15 to 0.35 | |
0 |
Sulfur (S), % | 0 to 0.040 | |
0 |
Tin (Sn), % | 0 | |
0.5 to 1.0 |
Zinc (Zn), % | 0 | |
34.3 to 39.2 |
Residuals, % | 0 | |
0 to 0.4 |