SAE-AISI 4140 Steel vs. S36200 Stainless Steel
Both SAE-AISI 4140 steel and S36200 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 4140 steel and the bottom bar is S36200 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 11 to 26 | |
3.4 to 4.6 |
Fatigue Strength, MPa | 360 to 650 | |
450 to 570 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
76 |
Shear Strength, MPa | 410 to 660 | |
680 to 810 |
Tensile Strength: Ultimate (UTS), MPa | 690 to 1080 | |
1180 to 1410 |
Tensile Strength: Yield (Proof), MPa | 590 to 990 | |
960 to 1240 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
280 |
Maximum Temperature: Mechanical, °C | 420 | |
820 |
Melting Completion (Liquidus), °C | 1460 | |
1440 |
Melting Onset (Solidus), °C | 1420 | |
1400 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 43 | |
16 |
Thermal Expansion, µm/m-K | 13 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.3 | |
2.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.4 | |
2.6 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.4 | |
12 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
2.8 |
Embodied Energy, MJ/kg | 20 | |
40 |
Embodied Water, L/kg | 51 | |
120 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 74 to 180 | |
46 to 51 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 920 to 2590 | |
2380 to 3930 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 25 to 38 | |
42 to 50 |
Strength to Weight: Bending, points | 22 to 30 | |
32 to 36 |
Thermal Diffusivity, mm2/s | 12 | |
4.3 |
Thermal Shock Resistance, points | 20 to 32 | |
40 to 48 |
Alloy Composition
Aluminum (Al), % | 0 | |
0 to 0.1 |
Carbon (C), % | 0.38 to 0.43 | |
0 to 0.050 |
Chromium (Cr), % | 0.8 to 1.1 | |
14 to 14.5 |
Iron (Fe), % | 96.8 to 97.8 | |
75.4 to 79.5 |
Manganese (Mn), % | 0.75 to 1.0 | |
0 to 0.5 |
Molybdenum (Mo), % | 0.15 to 0.25 | |
0 to 0.3 |
Nickel (Ni), % | 0 | |
6.5 to 7.0 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.030 |
Silicon (Si), % | 0.15 to 0.35 | |
0 to 0.3 |
Sulfur (S), % | 0 to 0.040 | |
0 to 0.030 |
Titanium (Ti), % | 0 | |
0.6 to 0.9 |