MakeItFrom.com
Menu (ESC)

SAE-AISI 4320 Steel vs. CC483K Bronze

SAE-AISI 4320 steel belongs to the iron alloys classification, while CC483K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4320 steel and the bottom bar is CC483K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 240
97
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21 to 29
6.4
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 570 to 790
310
Tensile Strength: Yield (Proof), MPa 430 to 460
170

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
990
Melting Onset (Solidus), °C 1420
870
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 46
68
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
36
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.7
3.8
Embodied Energy, MJ/kg 22
62
Embodied Water, L/kg 52
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
17
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 560
130
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20 to 28
9.9
Strength to Weight: Bending, points 19 to 24
12
Thermal Diffusivity, mm2/s 13
21
Thermal Shock Resistance, points 19 to 27
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0.17 to 0.22
0
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0
85 to 89
Iron (Fe), % 95.8 to 97
0 to 0.2
Lead (Pb), % 0
0 to 0.7
Manganese (Mn), % 0.45 to 0.65
0 to 0.2
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
0 to 2.0
Phosphorus (P), % 0 to 0.035
0 to 0.6
Silicon (Si), % 0.15 to 0.35
0 to 0.010
Sulfur (S), % 0 to 0.040
0 to 0.050
Tin (Sn), % 0
10.5 to 13
Zinc (Zn), % 0
0 to 0.5