MakeItFrom.com
Menu (ESC)

SAE-AISI 4320 Steel vs. S20910 Stainless Steel

Both SAE-AISI 4320 steel and S20910 stainless steel are iron alloys. They have 61% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4320 steel and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 240
230 to 290
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21 to 29
14 to 39
Fatigue Strength, MPa 320
310 to 460
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Shear Strength, MPa 370 to 500
500 to 570
Tensile Strength: Ultimate (UTS), MPa 570 to 790
780 to 940
Tensile Strength: Yield (Proof), MPa 430 to 460
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 420
1080
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 46
13
Thermal Expansion, µm/m-K 11
16

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
22
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
4.8
Embodied Energy, MJ/kg 22
68
Embodied Water, L/kg 52
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 560
460 to 1640
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20 to 28
28 to 33
Strength to Weight: Bending, points 19 to 24
24 to 27
Thermal Diffusivity, mm2/s 13
3.6
Thermal Shock Resistance, points 19 to 27
17 to 21

Alloy Composition

Carbon (C), % 0.17 to 0.22
0 to 0.060
Chromium (Cr), % 0.4 to 0.6
20.5 to 23.5
Iron (Fe), % 95.8 to 97
52.1 to 62.1
Manganese (Mn), % 0.45 to 0.65
4.0 to 6.0
Molybdenum (Mo), % 0.2 to 0.3
1.5 to 3.0
Nickel (Ni), % 1.7 to 2.0
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 0.75
Sulfur (S), % 0 to 0.040
0 to 0.030
Vanadium (V), % 0
0.1 to 0.3

Comparable Variants