MakeItFrom.com
Menu (ESC)

SAE-AISI 4340 Steel vs. EN 1.4945 Stainless Steel

Both SAE-AISI 4340 steel and EN 1.4945 stainless steel are iron alloys. They have 65% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4340 steel and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 360
200 to 220
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 22
19 to 34
Fatigue Strength, MPa 330 to 740
230 to 350
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 430 to 770
430 to 460
Tensile Strength: Ultimate (UTS), MPa 690 to 1280
640 to 740
Tensile Strength: Yield (Proof), MPa 470 to 1150
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 430
920
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1420
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 44
14
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
30
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.7
5.0
Embodied Energy, MJ/kg 22
73
Embodied Water, L/kg 53
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 170
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 3490
210 to 760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24 to 45
22 to 25
Strength to Weight: Bending, points 22 to 33
20 to 22
Thermal Diffusivity, mm2/s 12
3.7
Thermal Shock Resistance, points 20 to 38
14 to 16

Alloy Composition

Carbon (C), % 0.38 to 0.43
0.040 to 0.1
Chromium (Cr), % 0.7 to 0.9
15.5 to 17.5
Iron (Fe), % 95.1 to 96.3
57.9 to 65.7
Manganese (Mn), % 0.6 to 0.8
0 to 1.5
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0.15 to 0.35
0.3 to 0.6
Sulfur (S), % 0 to 0.040
0 to 0.015
Tungsten (W), % 0
2.5 to 3.5