MakeItFrom.com
Menu (ESC)

SAE-AISI 4340 Steel vs. Grade Ti-Pd8A Titanium

SAE-AISI 4340 steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4340 steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 360
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 22
13
Fatigue Strength, MPa 330 to 740
260
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 690 to 1280
500
Tensile Strength: Yield (Proof), MPa 470 to 1150
430

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 430
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 44
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.7
49
Embodied Energy, MJ/kg 22
840
Embodied Water, L/kg 53
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 170
65
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 3490
880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 24 to 45
31
Strength to Weight: Bending, points 22 to 33
31
Thermal Diffusivity, mm2/s 12
8.6
Thermal Shock Resistance, points 20 to 38
39

Alloy Composition

Carbon (C), % 0.38 to 0.43
0 to 0.1
Chromium (Cr), % 0.7 to 0.9
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 95.1 to 96.3
0 to 0.25
Manganese (Mn), % 0.6 to 0.8
0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4