MakeItFrom.com
Menu (ESC)

SAE-AISI 4340 Steel vs. C61800 Bronze

SAE-AISI 4340 steel belongs to the iron alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4340 steel and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 22
26
Fatigue Strength, MPa 330 to 740
190
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 430 to 770
310
Tensile Strength: Ultimate (UTS), MPa 690 to 1280
740
Tensile Strength: Yield (Proof), MPa 470 to 1150
310

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 430
220
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 44
64
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
13
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
14

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.7
3.1
Embodied Energy, MJ/kg 22
52
Embodied Water, L/kg 53
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 170
150
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 3490
420
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24 to 45
25
Strength to Weight: Bending, points 22 to 33
22
Thermal Diffusivity, mm2/s 12
18
Thermal Shock Resistance, points 20 to 38
26

Alloy Composition

Aluminum (Al), % 0
8.5 to 11
Carbon (C), % 0.38 to 0.43
0
Chromium (Cr), % 0.7 to 0.9
0
Copper (Cu), % 0
86.9 to 91
Iron (Fe), % 95.1 to 96.3
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.6 to 0.8
0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.020
Residuals, % 0
0 to 0.5