MakeItFrom.com
Menu (ESC)

SAE-AISI 4340 Steel vs. S35135 Stainless Steel

Both SAE-AISI 4340 steel and S35135 stainless steel are iron alloys. They have 40% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4340 steel and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 22
34
Fatigue Strength, MPa 330 to 740
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Shear Strength, MPa 430 to 770
390
Tensile Strength: Ultimate (UTS), MPa 690 to 1280
590
Tensile Strength: Yield (Proof), MPa 470 to 1150
230

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 430
1100
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 13
16

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
37
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.7
6.8
Embodied Energy, MJ/kg 22
94
Embodied Water, L/kg 53
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 170
160
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 3490
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24 to 45
20
Strength to Weight: Bending, points 22 to 33
19
Thermal Shock Resistance, points 20 to 38
13

Alloy Composition

Carbon (C), % 0.38 to 0.43
0 to 0.080
Chromium (Cr), % 0.7 to 0.9
20 to 25
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 95.1 to 96.3
28.3 to 45
Manganese (Mn), % 0.6 to 0.8
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.3
4.0 to 4.8
Nickel (Ni), % 1.7 to 2.0
30 to 38
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0.15 to 0.35
0.6 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.4 to 1.0