MakeItFrom.com
Menu (ESC)

SAE-AISI 4340M Steel vs. 520.0 Aluminum

SAE-AISI 4340M steel belongs to the iron alloys classification, while 520.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 4340M steel and the bottom bar is 520.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 710
75
Elastic (Young's, Tensile) Modulus, GPa 190
66
Elongation at Break, % 6.0
14
Fatigue Strength, MPa 690
55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
25
Shear Strength, MPa 1360
230
Tensile Strength: Ultimate (UTS), MPa 2340
330
Tensile Strength: Yield (Proof), MPa 1240
170

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 430
170
Melting Completion (Liquidus), °C 1440
600
Melting Onset (Solidus), °C 1400
480
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 38
87
Thermal Expansion, µm/m-K 13
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
21
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
72

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.9
9.8
Embodied Energy, MJ/kg 26
160
Embodied Water, L/kg 55
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
39
Resilience: Unit (Modulus of Resilience), kJ/m3 4120
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 84
35
Strength to Weight: Bending, points 51
41
Thermal Diffusivity, mm2/s 10
37
Thermal Shock Resistance, points 70
14

Alloy Composition

Aluminum (Al), % 0
87.9 to 90.5
Carbon (C), % 0.38 to 0.43
0
Chromium (Cr), % 0.7 to 1.0
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 93.3 to 94.8
0 to 0.3
Magnesium (Mg), % 0
9.5 to 10.6
Manganese (Mn), % 0.65 to 0.9
0 to 0.15
Molybdenum (Mo), % 0.35 to 0.45
0
Nickel (Ni), % 1.7 to 2.0
0
Phosphorus (P), % 0 to 0.012
0
Silicon (Si), % 1.5 to 1.8
0 to 0.25
Sulfur (S), % 0 to 0.012
0
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0.050 to 0.1
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15