MakeItFrom.com
Menu (ESC)

SAE-AISI 4340M Steel vs. B535.0 Aluminum

SAE-AISI 4340M steel belongs to the iron alloys classification, while B535.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 4340M steel and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 710
65
Elastic (Young's, Tensile) Modulus, GPa 190
66
Elongation at Break, % 6.0
10
Fatigue Strength, MPa 690
62
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
25
Shear Strength, MPa 1360
210
Tensile Strength: Ultimate (UTS), MPa 2340
260
Tensile Strength: Yield (Proof), MPa 1240
130

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 430
170
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 38
96
Thermal Expansion, µm/m-K 13
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
24
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
82

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.9
9.4
Embodied Energy, MJ/kg 26
160
Embodied Water, L/kg 55
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
22
Resilience: Unit (Modulus of Resilience), kJ/m3 4120
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 84
28
Strength to Weight: Bending, points 51
35
Thermal Diffusivity, mm2/s 10
40
Thermal Shock Resistance, points 70
11

Alloy Composition

Aluminum (Al), % 0
91.7 to 93.4
Carbon (C), % 0.38 to 0.43
0
Chromium (Cr), % 0.7 to 1.0
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 93.3 to 94.8
0 to 0.15
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0.65 to 0.9
0 to 0.050
Molybdenum (Mo), % 0.35 to 0.45
0
Nickel (Ni), % 1.7 to 2.0
0
Phosphorus (P), % 0 to 0.012
0
Silicon (Si), % 1.5 to 1.8
0 to 0.15
Sulfur (S), % 0 to 0.012
0
Titanium (Ti), % 0
0.1 to 0.25
Vanadium (V), % 0.050 to 0.1
0
Residuals, % 0
0 to 0.15