MakeItFrom.com
Menu (ESC)

SAE-AISI 4340M Steel vs. C443.0 Aluminum

SAE-AISI 4340M steel belongs to the iron alloys classification, while C443.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 4340M steel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 710
65
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 6.0
9.0
Fatigue Strength, MPa 690
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Shear Strength, MPa 1360
130
Tensile Strength: Ultimate (UTS), MPa 2340
230
Tensile Strength: Yield (Proof), MPa 1240
100

Thermal Properties

Latent Heat of Fusion, J/g 280
470
Maximum Temperature: Mechanical, °C 430
170
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1400
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 38
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
37
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
120

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.9
7.9
Embodied Energy, MJ/kg 26
150
Embodied Water, L/kg 55
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
17
Resilience: Unit (Modulus of Resilience), kJ/m3 4120
70
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 84
24
Strength to Weight: Bending, points 51
31
Thermal Diffusivity, mm2/s 10
58
Thermal Shock Resistance, points 70
10

Alloy Composition

Aluminum (Al), % 0
89.6 to 95.5
Carbon (C), % 0.38 to 0.43
0
Chromium (Cr), % 0.7 to 1.0
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 93.3 to 94.8
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.65 to 0.9
0 to 0.35
Molybdenum (Mo), % 0.35 to 0.45
0
Nickel (Ni), % 1.7 to 2.0
0 to 0.5
Phosphorus (P), % 0 to 0.012
0
Silicon (Si), % 1.5 to 1.8
4.5 to 6.0
Sulfur (S), % 0 to 0.012
0
Tin (Sn), % 0
0 to 0.15
Vanadium (V), % 0.050 to 0.1
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25