MakeItFrom.com
Menu (ESC)

SAE-AISI 4340M Steel vs. CC490K Brass

SAE-AISI 4340M steel belongs to the iron alloys classification, while CC490K brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4340M steel and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 710
76
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.0
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 2340
230
Tensile Strength: Yield (Proof), MPa 1240
110

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 430
160
Melting Completion (Liquidus), °C 1440
980
Melting Onset (Solidus), °C 1400
910
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 38
72
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
16
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
16

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
30
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.9
2.9
Embodied Energy, MJ/kg 26
47
Embodied Water, L/kg 55
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
28
Resilience: Unit (Modulus of Resilience), kJ/m3 4120
54
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 84
7.3
Strength to Weight: Bending, points 51
9.5
Thermal Diffusivity, mm2/s 10
22
Thermal Shock Resistance, points 70
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0.38 to 0.43
0
Chromium (Cr), % 0.7 to 1.0
0
Copper (Cu), % 0
81 to 86
Iron (Fe), % 93.3 to 94.8
0 to 0.5
Lead (Pb), % 0
3.0 to 6.0
Manganese (Mn), % 0.65 to 0.9
0
Molybdenum (Mo), % 0.35 to 0.45
0
Nickel (Ni), % 1.7 to 2.0
0 to 2.0
Phosphorus (P), % 0 to 0.012
0 to 0.050
Silicon (Si), % 1.5 to 1.8
0 to 0.010
Sulfur (S), % 0 to 0.012
0 to 0.1
Tin (Sn), % 0
2.0 to 3.5
Vanadium (V), % 0.050 to 0.1
0
Zinc (Zn), % 0
7.0 to 9.5