MakeItFrom.com
Menu (ESC)

SAE-AISI 4615 Steel vs. S32803 Stainless Steel

Both SAE-AISI 4615 steel and S32803 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 68% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4615 steel and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 27
18
Fatigue Strength, MPa 260
350
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
81
Shear Strength, MPa 310
420
Tensile Strength: Ultimate (UTS), MPa 480
680
Tensile Strength: Yield (Proof), MPa 350
560

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 410
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 47
16
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
19
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.6
3.7
Embodied Energy, MJ/kg 22
53
Embodied Water, L/kg 50
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 320
760
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 13
4.4
Thermal Shock Resistance, points 16
22

Alloy Composition

Carbon (C), % 0.13 to 0.18
0 to 0.015
Chromium (Cr), % 0
28 to 29
Iron (Fe), % 96.4 to 97.4
62.9 to 67.1
Manganese (Mn), % 0.45 to 0.65
0 to 0.5
Molybdenum (Mo), % 0.2 to 0.3
1.8 to 2.5
Nickel (Ni), % 1.7 to 2.0
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0.15 to 0.35
0 to 0.55
Sulfur (S), % 0 to 0.040
0 to 0.0035