MakeItFrom.com
Menu (ESC)

SAE-AISI 4620 Steel vs. 520.0 Aluminum

SAE-AISI 4620 steel belongs to the iron alloys classification, while 520.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 4620 steel and the bottom bar is 520.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 210
75
Elastic (Young's, Tensile) Modulus, GPa 190
66
Elongation at Break, % 16 to 27
14
Fatigue Strength, MPa 260 to 360
55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
25
Shear Strength, MPa 320 to 420
230
Tensile Strength: Ultimate (UTS), MPa 490 to 680
330
Tensile Strength: Yield (Proof), MPa 350 to 550
170

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1420
480
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 47
87
Thermal Expansion, µm/m-K 13
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
21
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
72

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 1.6
9.8
Embodied Energy, MJ/kg 22
160
Embodied Water, L/kg 50
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
39
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 800
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 17 to 24
35
Strength to Weight: Bending, points 18 to 22
41
Thermal Diffusivity, mm2/s 13
37
Thermal Shock Resistance, points 15 to 20
14

Alloy Composition

Aluminum (Al), % 0
87.9 to 90.5
Carbon (C), % 0.17 to 0.22
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 96.4 to 97.4
0 to 0.3
Magnesium (Mg), % 0
9.5 to 10.6
Manganese (Mn), % 0.45 to 0.65
0 to 0.15
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0 to 0.25
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15