MakeItFrom.com
Menu (ESC)

SAE-AISI 4620 Steel vs. CC497K Bronze

SAE-AISI 4620 steel belongs to the iron alloys classification, while CC497K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4620 steel and the bottom bar is CC497K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 210
55
Elastic (Young's, Tensile) Modulus, GPa 190
93
Elongation at Break, % 16 to 27
6.7
Poisson's Ratio 0.29
0.36
Shear Modulus, GPa 73
34
Tensile Strength: Ultimate (UTS), MPa 490 to 680
190
Tensile Strength: Yield (Proof), MPa 350 to 550
91

Thermal Properties

Latent Heat of Fusion, J/g 250
160
Maximum Temperature: Mechanical, °C 410
130
Melting Completion (Liquidus), °C 1460
870
Melting Onset (Solidus), °C 1420
800
Specific Heat Capacity, J/kg-K 470
330
Thermal Conductivity, W/m-K 47
53
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
29
Density, g/cm3 7.9
9.3
Embodied Carbon, kg CO2/kg material 1.6
3.0
Embodied Energy, MJ/kg 22
48
Embodied Water, L/kg 50
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
10
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 800
45
Stiffness to Weight: Axial, points 13
5.5
Stiffness to Weight: Bending, points 24
16
Strength to Weight: Axial, points 17 to 24
5.6
Strength to Weight: Bending, points 18 to 22
7.8
Thermal Diffusivity, mm2/s 13
17
Thermal Shock Resistance, points 15 to 20
7.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.75
Carbon (C), % 0.17 to 0.22
0
Copper (Cu), % 0
67.5 to 77.5
Iron (Fe), % 96.4 to 97.4
0 to 0.25
Lead (Pb), % 0
18 to 23
Manganese (Mn), % 0.45 to 0.65
0 to 0.2
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
0.5 to 2.5
Phosphorus (P), % 0 to 0.035
0 to 0.1
Silicon (Si), % 0.15 to 0.35
0 to 0.010
Sulfur (S), % 0 to 0.040
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
0 to 2.0