MakeItFrom.com
Menu (ESC)

SAE-AISI 4620 Steel vs. Grade 19 Titanium

SAE-AISI 4620 steel belongs to the iron alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4620 steel and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 16 to 27
5.6 to 17
Fatigue Strength, MPa 260 to 360
550 to 620
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
47
Shear Strength, MPa 320 to 420
550 to 750
Tensile Strength: Ultimate (UTS), MPa 490 to 680
890 to 1300
Tensile Strength: Yield (Proof), MPa 350 to 550
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 410
370
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1600
Specific Heat Capacity, J/kg-K 470
520
Thermal Conductivity, W/m-K 47
6.2
Thermal Expansion, µm/m-K 13
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
45
Density, g/cm3 7.9
5.0
Embodied Carbon, kg CO2/kg material 1.6
47
Embodied Energy, MJ/kg 22
760
Embodied Water, L/kg 50
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 800
3040 to 5530
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
33
Strength to Weight: Axial, points 17 to 24
49 to 72
Strength to Weight: Bending, points 18 to 22
41 to 53
Thermal Diffusivity, mm2/s 13
2.4
Thermal Shock Resistance, points 15 to 20
57 to 83

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0.17 to 0.22
0 to 0.050
Chromium (Cr), % 0
5.5 to 6.5
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 96.4 to 97.4
0 to 0.3
Manganese (Mn), % 0.45 to 0.65
0
Molybdenum (Mo), % 0.2 to 0.3
3.5 to 4.5
Nickel (Ni), % 1.7 to 2.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
71.1 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants