MakeItFrom.com
Menu (ESC)

SAE-AISI 4620 Steel vs. C72150 Copper-nickel

SAE-AISI 4620 steel belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4620 steel and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 210
99
Elastic (Young's, Tensile) Modulus, GPa 190
150
Elongation at Break, % 16 to 27
29
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
55
Shear Strength, MPa 320 to 420
320
Tensile Strength: Ultimate (UTS), MPa 490 to 680
490
Tensile Strength: Yield (Proof), MPa 350 to 550
210

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
600
Melting Completion (Liquidus), °C 1460
1210
Melting Onset (Solidus), °C 1420
1250
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 47
22
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
45
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.6
6.1
Embodied Energy, MJ/kg 22
88
Embodied Water, L/kg 50
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 800
150
Stiffness to Weight: Axial, points 13
9.1
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17 to 24
15
Strength to Weight: Bending, points 18 to 22
15
Thermal Diffusivity, mm2/s 13
6.0
Thermal Shock Resistance, points 15 to 20
18

Alloy Composition

Carbon (C), % 0.17 to 0.22
0 to 0.1
Copper (Cu), % 0
52.5 to 57
Iron (Fe), % 96.4 to 97.4
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.45 to 0.65
0 to 0.050
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
43 to 46
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5