MakeItFrom.com
Menu (ESC)

SAE-AISI 4620 Steel vs. C89320 Bronze

SAE-AISI 4620 steel belongs to the iron alloys classification, while C89320 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4620 steel and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 27
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 490 to 680
270
Tensile Strength: Yield (Proof), MPa 350 to 550
140

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 410
180
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
930
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 47
56
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
15
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
15

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
37
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.6
3.5
Embodied Energy, MJ/kg 22
56
Embodied Water, L/kg 50
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
38
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 800
93
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17 to 24
8.5
Strength to Weight: Bending, points 18 to 22
10
Thermal Diffusivity, mm2/s 13
17
Thermal Shock Resistance, points 15 to 20
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Carbon (C), % 0.17 to 0.22
0
Copper (Cu), % 0
87 to 91
Iron (Fe), % 96.4 to 97.4
0 to 0.2
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.45 to 0.65
0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
0 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 0.3
Silicon (Si), % 0.15 to 0.35
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5