MakeItFrom.com
Menu (ESC)

SAE-AISI 4620 Steel vs. C93700 Bronze

SAE-AISI 4620 steel belongs to the iron alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4620 steel and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
99
Elongation at Break, % 16 to 27
20
Fatigue Strength, MPa 260 to 360
90
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 73
37
Tensile Strength: Ultimate (UTS), MPa 490 to 680
240
Tensile Strength: Yield (Proof), MPa 350 to 550
130

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 410
140
Melting Completion (Liquidus), °C 1460
930
Melting Onset (Solidus), °C 1420
760
Specific Heat Capacity, J/kg-K 470
350
Thermal Conductivity, W/m-K 47
47
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
10

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
33
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.6
3.5
Embodied Energy, MJ/kg 22
57
Embodied Water, L/kg 50
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
40
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 800
79
Stiffness to Weight: Axial, points 13
6.2
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 17 to 24
7.5
Strength to Weight: Bending, points 18 to 22
9.6
Thermal Diffusivity, mm2/s 13
15
Thermal Shock Resistance, points 15 to 20
9.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.17 to 0.22
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 96.4 to 97.4
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Manganese (Mn), % 0.45 to 0.65
0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
0 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 1.5
Silicon (Si), % 0.15 to 0.35
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0