MakeItFrom.com
Menu (ESC)

SAE-AISI 4620 Steel vs. C95820 Bronze

SAE-AISI 4620 steel belongs to the iron alloys classification, while C95820 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4620 steel and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 16 to 27
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 490 to 680
730
Tensile Strength: Yield (Proof), MPa 350 to 550
310

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 410
230
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 47
38
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
29
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 1.6
3.5
Embodied Energy, MJ/kg 22
56
Embodied Water, L/kg 50
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
86
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 800
400
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17 to 24
24
Strength to Weight: Bending, points 18 to 22
22
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 15 to 20
25

Alloy Composition

Aluminum (Al), % 0
9.0 to 10
Carbon (C), % 0.17 to 0.22
0
Copper (Cu), % 0
77.5 to 82.5
Iron (Fe), % 96.4 to 97.4
4.0 to 5.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.45 to 0.65
0 to 1.5
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
4.5 to 5.8
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.8