MakeItFrom.com
Menu (ESC)

SAE-AISI 50B60 Steel vs. C96300 Copper-nickel

SAE-AISI 50B60 steel belongs to the iron alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 50B60 steel and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 190
150
Elastic (Young's, Tensile) Modulus, GPa 190
130
Elongation at Break, % 12 to 20
11
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
49
Tensile Strength: Ultimate (UTS), MPa 610 to 630
580
Tensile Strength: Yield (Proof), MPa 350 to 530
430

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 410
240
Melting Completion (Liquidus), °C 1450
1200
Melting Onset (Solidus), °C 1410
1150
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 45
37
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
42
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
5.1
Embodied Energy, MJ/kg 19
76
Embodied Water, L/kg 48
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 100
59
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 750
720
Stiffness to Weight: Axial, points 13
8.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 23
18
Strength to Weight: Bending, points 20 to 21
17
Thermal Diffusivity, mm2/s 12
10
Thermal Shock Resistance, points 20
20

Alloy Composition

Boron (B), % 0.00050 to 0.0030
0
Carbon (C), % 0.56 to 0.64
0 to 0.15
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0
72.3 to 80.8
Iron (Fe), % 97.3 to 98.1
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.75 to 1.0
0.25 to 1.5
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.020
Residuals, % 0
0 to 0.5