MakeItFrom.com
Menu (ESC)

SAE-AISI 5130 Steel vs. C95800 Bronze

SAE-AISI 5130 steel belongs to the iron alloys classification, while C95800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 5130 steel and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 22
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 500 to 640
660
Tensile Strength: Yield (Proof), MPa 330 to 530
270

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 420
230
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 45
36
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 19
55
Embodied Water, L/kg 50
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 98
110
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 750
310
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18 to 23
22
Strength to Weight: Bending, points 18 to 21
20
Thermal Diffusivity, mm2/s 12
9.9
Thermal Shock Resistance, points 16 to 20
23

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0.28 to 0.33
0
Chromium (Cr), % 0.8 to 1.1
0
Copper (Cu), % 0
79 to 83.2
Iron (Fe), % 97.2 to 98.1
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.7 to 0.9
0.8 to 1.5
Nickel (Ni), % 0
4.0 to 5.0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5