MakeItFrom.com
Menu (ESC)

SAE-AISI 5140 Steel vs. 6463 Aluminum

SAE-AISI 5140 steel belongs to the iron alloys classification, while 6463 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 5140 steel and the bottom bar is 6463 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 290
42 to 74
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 12 to 29
9.0 to 17
Fatigue Strength, MPa 220 to 570
45 to 76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 360 to 600
86 to 150
Tensile Strength: Ultimate (UTS), MPa 560 to 970
140 to 230
Tensile Strength: Yield (Proof), MPa 290 to 840
82 to 200

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 420
160
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1420
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 45
190 to 210
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
50 to 55
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
170 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.4
8.3
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 49
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 180
17 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1880
50 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 20 to 34
14 to 24
Strength to Weight: Bending, points 19 to 28
22 to 31
Thermal Diffusivity, mm2/s 12
79 to 86
Thermal Shock Resistance, points 16 to 29
6.3 to 10

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.4
Carbon (C), % 0.38 to 0.43
0
Chromium (Cr), % 0.7 to 0.9
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 97.3 to 98.1
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0.7 to 0.9
0 to 0.050
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0.2 to 0.6
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15