MakeItFrom.com
Menu (ESC)

SAE-AISI 5140 Steel vs. AISI 418 Stainless Steel

Both SAE-AISI 5140 steel and AISI 418 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 5140 steel and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 290
330
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 29
17
Fatigue Strength, MPa 220 to 570
520
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 360 to 600
680
Tensile Strength: Ultimate (UTS), MPa 560 to 970
1100
Tensile Strength: Yield (Proof), MPa 290 to 840
850

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 420
770
Melting Completion (Liquidus), °C 1460
1500
Melting Onset (Solidus), °C 1420
1460
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 45
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
15
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 19
41
Embodied Water, L/kg 49
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 180
170
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1880
1830
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20 to 34
38
Strength to Weight: Bending, points 19 to 28
29
Thermal Diffusivity, mm2/s 12
6.7
Thermal Shock Resistance, points 16 to 29
40

Alloy Composition

Carbon (C), % 0.38 to 0.43
0.15 to 0.2
Chromium (Cr), % 0.7 to 0.9
12 to 14
Iron (Fe), % 97.3 to 98.1
78.5 to 83.6
Manganese (Mn), % 0.7 to 0.9
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
1.8 to 2.2
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.030
Tungsten (W), % 0
2.5 to 3.5