MakeItFrom.com
Menu (ESC)

SAE-AISI 5140 Steel vs. EN 1.0644 Steel

Both SAE-AISI 5140 steel and EN 1.0644 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 5140 steel and the bottom bar is EN 1.0644 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 290
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 29
17
Fatigue Strength, MPa 220 to 570
380
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 360 to 600
420
Tensile Strength: Ultimate (UTS), MPa 560 to 970
690
Tensile Strength: Yield (Proof), MPa 290 to 840
570

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 45
47
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 19
24
Embodied Water, L/kg 49
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1880
870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20 to 34
24
Strength to Weight: Bending, points 19 to 28
22
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 16 to 29
22

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Carbon (C), % 0.38 to 0.43
0.16 to 0.22
Chromium (Cr), % 0.7 to 0.9
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.3 to 98.1
96.1 to 98.4
Manganese (Mn), % 0.7 to 0.9
1.3 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0.15 to 0.35
0.1 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.035
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0.080 to 0.15