MakeItFrom.com
Menu (ESC)

SAE-AISI 5140 Steel vs. CC767S Brass

SAE-AISI 5140 steel belongs to the iron alloys classification, while CC767S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 5140 steel and the bottom bar is CC767S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 290
86
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 29
34
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 560 to 970
430
Tensile Strength: Yield (Proof), MPa 290 to 840
150

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 420
120
Melting Completion (Liquidus), °C 1460
840
Melting Onset (Solidus), °C 1420
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 45
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
36

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
47
Embodied Water, L/kg 49
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1880
100
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 20 to 34
15
Strength to Weight: Bending, points 19 to 28
16
Thermal Diffusivity, mm2/s 12
34
Thermal Shock Resistance, points 16 to 29
14

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.8
Carbon (C), % 0.38 to 0.43
0
Chromium (Cr), % 0.7 to 0.9
0
Copper (Cu), % 0
58 to 64
Iron (Fe), % 97.3 to 98.1
0 to 0.5
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.7 to 0.9
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
32.8 to 41.9