MakeItFrom.com
Menu (ESC)

SAE-AISI 5140 Steel vs. SAE-AISI 9255 Steel

Both SAE-AISI 5140 steel and SAE-AISI 9255 steel are iron alloys. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is SAE-AISI 5140 steel and the bottom bar is SAE-AISI 9255 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 290
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 29
21
Fatigue Strength, MPa 220 to 570
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Shear Strength, MPa 360 to 600
430
Tensile Strength: Ultimate (UTS), MPa 560 to 970
680
Tensile Strength: Yield (Proof), MPa 290 to 840
390

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 45
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 19
20
Embodied Water, L/kg 49
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1880
400
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20 to 34
24
Strength to Weight: Bending, points 19 to 28
22
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 16 to 29
21

Alloy Composition

Carbon (C), % 0.38 to 0.43
0.51 to 0.59
Chromium (Cr), % 0.7 to 0.9
0
Iron (Fe), % 97.3 to 98.1
96.2 to 97
Manganese (Mn), % 0.7 to 0.9
0.7 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0.15 to 0.35
1.8 to 2.2
Sulfur (S), % 0 to 0.040
0 to 0.040