MakeItFrom.com
Menu (ESC)

SAE-AISI 5160 Steel vs. EN 1.4980 Stainless Steel

Both SAE-AISI 5160 steel and EN 1.4980 stainless steel are iron alloys. They have 56% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 5160 steel and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 18
17
Fatigue Strength, MPa 180 to 650
410
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
75
Shear Strength, MPa 390 to 700
630
Tensile Strength: Ultimate (UTS), MPa 660 to 1150
1030
Tensile Strength: Yield (Proof), MPa 280 to 1010
680

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 420
920
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 43
13
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
26
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
6.0
Embodied Energy, MJ/kg 19
87
Embodied Water, L/kg 50
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 160
150
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 2700
1180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 41
36
Strength to Weight: Bending, points 22 to 31
28
Thermal Diffusivity, mm2/s 12
3.5
Thermal Shock Resistance, points 19 to 34
22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0.56 to 0.61
0.030 to 0.080
Chromium (Cr), % 0.7 to 0.9
13.5 to 16
Iron (Fe), % 97.1 to 97.8
49.2 to 58.5
Manganese (Mn), % 0.75 to 1.0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5