MakeItFrom.com
Menu (ESC)

SAE-AISI 5160 Steel vs. Grade 6 Titanium

SAE-AISI 5160 steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 5160 steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 12 to 18
11
Fatigue Strength, MPa 180 to 650
290
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
39
Shear Strength, MPa 390 to 700
530
Tensile Strength: Ultimate (UTS), MPa 660 to 1150
890
Tensile Strength: Yield (Proof), MPa 280 to 1010
840

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 420
310
Melting Completion (Liquidus), °C 1450
1580
Melting Onset (Solidus), °C 1410
1530
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 43
7.8
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
30
Embodied Energy, MJ/kg 19
480
Embodied Water, L/kg 50
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 160
92
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 2700
3390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 23 to 41
55
Strength to Weight: Bending, points 22 to 31
46
Thermal Diffusivity, mm2/s 12
3.2
Thermal Shock Resistance, points 19 to 34
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0.56 to 0.61
0 to 0.080
Chromium (Cr), % 0.7 to 0.9
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.1 to 97.8
0 to 0.5
Manganese (Mn), % 0.75 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Residuals, % 0
0 to 0.4