MakeItFrom.com
Menu (ESC)

SAE-AISI 5160 Steel vs. C81400 Copper

SAE-AISI 5160 steel belongs to the iron alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 5160 steel and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 18
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 660 to 1150
370
Tensile Strength: Yield (Proof), MPa 280 to 1010
250

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 420
200
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1410
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 43
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
60
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
61

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 19
45
Embodied Water, L/kg 50
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 160
36
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 2700
260
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23 to 41
11
Strength to Weight: Bending, points 22 to 31
13
Thermal Diffusivity, mm2/s 12
75
Thermal Shock Resistance, points 19 to 34
13

Alloy Composition

Beryllium (Be), % 0
0.020 to 0.1
Carbon (C), % 0.56 to 0.61
0
Chromium (Cr), % 0.7 to 0.9
0.6 to 1.0
Copper (Cu), % 0
98.4 to 99.38
Iron (Fe), % 97.1 to 97.8
0
Manganese (Mn), % 0.75 to 1.0
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5