MakeItFrom.com
Menu (ESC)

SAE-AISI 5160 Steel vs. C96300 Copper-nickel

SAE-AISI 5160 steel belongs to the iron alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 5160 steel and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 340
150
Elastic (Young's, Tensile) Modulus, GPa 190
130
Elongation at Break, % 12 to 18
11
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
49
Tensile Strength: Ultimate (UTS), MPa 660 to 1150
580
Tensile Strength: Yield (Proof), MPa 280 to 1010
430

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 420
240
Melting Completion (Liquidus), °C 1450
1200
Melting Onset (Solidus), °C 1410
1150
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 43
37
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
42
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
5.1
Embodied Energy, MJ/kg 19
76
Embodied Water, L/kg 50
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 160
59
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 2700
720
Stiffness to Weight: Axial, points 13
8.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 23 to 41
18
Strength to Weight: Bending, points 22 to 31
17
Thermal Diffusivity, mm2/s 12
10
Thermal Shock Resistance, points 19 to 34
20

Alloy Composition

Carbon (C), % 0.56 to 0.61
0 to 0.15
Chromium (Cr), % 0.7 to 0.9
0
Copper (Cu), % 0
72.3 to 80.8
Iron (Fe), % 97.1 to 97.8
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.75 to 1.0
0.25 to 1.5
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.020
Residuals, % 0
0 to 0.5