MakeItFrom.com
Menu (ESC)

SAE-AISI 51B60 Steel vs. N06110 Nickel

SAE-AISI 51B60 steel belongs to the iron alloys classification, while N06110 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 51B60 steel and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 12 to 21
53
Fatigue Strength, MPa 280 to 340
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
84
Shear Strength, MPa 390 to 420
530
Tensile Strength: Ultimate (UTS), MPa 660
730
Tensile Strength: Yield (Proof), MPa 400 to 550
330

Thermal Properties

Latent Heat of Fusion, J/g 250
340
Maximum Temperature: Mechanical, °C 420
1020
Melting Completion (Liquidus), °C 1450
1490
Melting Onset (Solidus), °C 1410
1440
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
65
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.4
11
Embodied Energy, MJ/kg 19
160
Embodied Water, L/kg 49
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 120
320
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 800
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 23
23
Strength to Weight: Bending, points 22
21
Thermal Shock Resistance, points 19
20

Alloy Composition

Aluminum (Al), % 0
0 to 1.0
Boron (B), % 0.00050 to 0.0030
0
Carbon (C), % 0.56 to 0.64
0 to 0.15
Chromium (Cr), % 0.7 to 0.9
28 to 33
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 97 to 97.8
0 to 1.0
Manganese (Mn), % 0.75 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 0.5
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0