MakeItFrom.com
Menu (ESC)

SAE-AISI 52100 Steel vs. C69710 Brass

SAE-AISI 52100 steel belongs to the iron alloys classification, while C69710 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 52100 steel and the bottom bar is C69710 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10 to 20
25
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
41
Shear Strength, MPa 370 to 420
300
Tensile Strength: Ultimate (UTS), MPa 590 to 2010
470
Tensile Strength: Yield (Proof), MPa 360 to 560
230

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 430
160
Melting Completion (Liquidus), °C 1450
930
Melting Onset (Solidus), °C 1410
880
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 47
40
Thermal Expansion, µm/m-K 12 to 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
26
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.5
2.7
Embodied Energy, MJ/kg 20
44
Embodied Water, L/kg 51
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 310
99
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 840
250
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21 to 72
16
Strength to Weight: Bending, points 20 to 45
16
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 19 to 61
16

Alloy Composition

Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 1.4 to 1.6
0
Copper (Cu), % 0
75 to 80
Iron (Fe), % 96.5 to 97.3
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0.25 to 0.45
0 to 0.4
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.35
2.5 to 3.5
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
13.8 to 22
Residuals, % 0
0 to 0.5