MakeItFrom.com
Menu (ESC)

SAE-AISI 52100 Steel vs. C84800 Brass

SAE-AISI 52100 steel belongs to the iron alloys classification, while C84800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 52100 steel and the bottom bar is C84800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 10 to 20
18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
39
Tensile Strength: Ultimate (UTS), MPa 590 to 2010
230
Tensile Strength: Yield (Proof), MPa 360 to 560
100

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 430
150
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1410
830
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 47
72
Thermal Expansion, µm/m-K 12 to 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
17

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
27
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.5
2.8
Embodied Energy, MJ/kg 20
46
Embodied Water, L/kg 51
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 310
34
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 840
53
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21 to 72
7.3
Strength to Weight: Bending, points 20 to 45
9.6
Thermal Diffusivity, mm2/s 13
23
Thermal Shock Resistance, points 19 to 61
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 1.4 to 1.6
0
Copper (Cu), % 0
75 to 77
Iron (Fe), % 96.5 to 97.3
0 to 0.4
Lead (Pb), % 0
5.5 to 7.0
Manganese (Mn), % 0.25 to 0.45
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0.15 to 0.35
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
2.0 to 3.0
Zinc (Zn), % 0
13 to 17
Residuals, % 0
0 to 0.7