MakeItFrom.com
Menu (ESC)

SAE-AISI 6150 Steel vs. 319.0 Aluminum

SAE-AISI 6150 steel belongs to the iron alloys classification, while 319.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 6150 steel and the bottom bar is 319.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 350
78 to 84
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 15 to 23
1.8 to 2.0
Fatigue Strength, MPa 300 to 750
76 to 80
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Shear Strength, MPa 400 to 730
170 to 210
Tensile Strength: Ultimate (UTS), MPa 630 to 1200
190 to 240
Tensile Strength: Yield (Proof), MPa 420 to 1160
110 to 180

Thermal Properties

Latent Heat of Fusion, J/g 250
480
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1410
540
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 46
110
Thermal Expansion, µm/m-K 12 to 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
27
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
84

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.0
7.7
Embodied Energy, MJ/kg 28
140
Embodied Water, L/kg 51
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
3.3 to 3.9
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3590
88 to 220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 22 to 43
18 to 24
Strength to Weight: Bending, points 21 to 32
25 to 30
Thermal Diffusivity, mm2/s 13
44
Thermal Shock Resistance, points 20 to 38
8.6 to 11

Alloy Composition

Aluminum (Al), % 0
85.8 to 91.5
Carbon (C), % 0.48 to 0.53
0
Chromium (Cr), % 0.8 to 1.1
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 96.7 to 97.7
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.7 to 0.9
0 to 0.5
Nickel (Ni), % 0
0 to 0.35
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
5.5 to 6.5
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5