MakeItFrom.com
Menu (ESC)

SAE-AISI 6150 Steel vs. 5657 Aluminum

SAE-AISI 6150 steel belongs to the iron alloys classification, while 5657 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 6150 steel and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 350
40 to 50
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 15 to 23
6.6 to 15
Fatigue Strength, MPa 300 to 750
74 to 88
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 400 to 730
92 to 110
Tensile Strength: Ultimate (UTS), MPa 630 to 1200
150 to 200
Tensile Strength: Yield (Proof), MPa 420 to 1160
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 420
180
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1410
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 46
210
Thermal Expansion, µm/m-K 12 to 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
54
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
180

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.0
8.4
Embodied Energy, MJ/kg 28
160
Embodied Water, L/kg 51
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3590
140 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22 to 43
15 to 20
Strength to Weight: Bending, points 21 to 32
23 to 28
Thermal Diffusivity, mm2/s 13
84
Thermal Shock Resistance, points 20 to 38
6.7 to 8.6

Alloy Composition

Aluminum (Al), % 0
98.5 to 99.4
Carbon (C), % 0.48 to 0.53
0
Chromium (Cr), % 0.8 to 1.1
0
Copper (Cu), % 0
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 96.7 to 97.7
0 to 0.1
Magnesium (Mg), % 0
0.6 to 1.0
Manganese (Mn), % 0.7 to 0.9
0 to 0.030
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0 to 0.080
Sulfur (S), % 0 to 0.040
0
Vanadium (V), % 0.15 to 0.3
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.050