SAE-AISI 6150 Steel vs. C19000 Copper
SAE-AISI 6150 steel belongs to the iron alloys classification, while C19000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 6150 steel and the bottom bar is C19000 copper.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
120 |
Elongation at Break, % | 15 to 23 | |
2.5 to 50 |
Poisson's Ratio | 0.29 | |
0.34 |
Shear Modulus, GPa | 73 | |
43 |
Shear Strength, MPa | 400 to 730 | |
170 to 390 |
Tensile Strength: Ultimate (UTS), MPa | 630 to 1200 | |
260 to 760 |
Tensile Strength: Yield (Proof), MPa | 420 to 1160 | |
140 to 630 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
210 |
Maximum Temperature: Mechanical, °C | 420 | |
200 |
Melting Completion (Liquidus), °C | 1460 | |
1080 |
Melting Onset (Solidus), °C | 1410 | |
1040 |
Specific Heat Capacity, J/kg-K | 470 | |
390 |
Thermal Conductivity, W/m-K | 46 | |
250 |
Thermal Expansion, µm/m-K | 12 to 13 | |
17 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.3 | |
60 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.4 | |
61 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.3 | |
31 |
Density, g/cm3 | 7.8 | |
8.9 |
Embodied Carbon, kg CO2/kg material | 2.0 | |
2.7 |
Embodied Energy, MJ/kg | 28 | |
42 |
Embodied Water, L/kg | 51 | |
310 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 130 to 180 | |
18 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 460 to 3590 | |
89 to 1730 |
Stiffness to Weight: Axial, points | 13 | |
7.2 |
Stiffness to Weight: Bending, points | 24 | |
18 |
Strength to Weight: Axial, points | 22 to 43 | |
8.2 to 24 |
Strength to Weight: Bending, points | 21 to 32 | |
10 to 21 |
Thermal Diffusivity, mm2/s | 13 | |
73 |
Thermal Shock Resistance, points | 20 to 38 | |
9.3 to 27 |
Alloy Composition
Carbon (C), % | 0.48 to 0.53 | |
0 |
Chromium (Cr), % | 0.8 to 1.1 | |
0 |
Copper (Cu), % | 0 | |
96.9 to 99 |
Iron (Fe), % | 96.7 to 97.7 | |
0 to 0.1 |
Lead (Pb), % | 0 | |
0 to 0.050 |
Manganese (Mn), % | 0.7 to 0.9 | |
0 |
Nickel (Ni), % | 0 | |
0.9 to 1.3 |
Phosphorus (P), % | 0 to 0.035 | |
0.15 to 0.35 |
Silicon (Si), % | 0.15 to 0.35 | |
0 |
Sulfur (S), % | 0 to 0.040 | |
0 |
Vanadium (V), % | 0.15 to 0.3 | |
0 |
Zinc (Zn), % | 0 | |
0 to 0.8 |
Residuals, % | 0 | |
0 to 0.5 |