MakeItFrom.com
Menu (ESC)

SAE-AISI 6150 Steel vs. C66300 Brass

SAE-AISI 6150 steel belongs to the iron alloys classification, while C66300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 6150 steel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 15 to 23
2.3 to 22
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 400 to 730
290 to 470
Tensile Strength: Ultimate (UTS), MPa 630 to 1200
460 to 810
Tensile Strength: Yield (Proof), MPa 420 to 1160
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 420
180
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1410
1000
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 46
110
Thermal Expansion, µm/m-K 12 to 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
26

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
29
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 28
46
Embodied Water, L/kg 51
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3590
710 to 2850
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 43
15 to 26
Strength to Weight: Bending, points 21 to 32
15 to 22
Thermal Diffusivity, mm2/s 13
32
Thermal Shock Resistance, points 20 to 38
16 to 28

Alloy Composition

Carbon (C), % 0.48 to 0.53
0
Chromium (Cr), % 0.8 to 1.1
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
84.5 to 87.5
Iron (Fe), % 96.7 to 97.7
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.7 to 0.9
0
Phosphorus (P), % 0 to 0.035
0 to 0.35
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.5 to 3.0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5