MakeItFrom.com
Menu (ESC)

SAE-AISI 6150 Steel vs. C69430 Brass

SAE-AISI 6150 steel belongs to the iron alloys classification, while C69430 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 6150 steel and the bottom bar is C69430 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 15 to 23
17
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 400 to 730
350
Tensile Strength: Ultimate (UTS), MPa 630 to 1200
570
Tensile Strength: Yield (Proof), MPa 420 to 1160
280

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1410
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 46
26
Thermal Expansion, µm/m-K 12 to 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
44
Embodied Water, L/kg 51
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
80
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3590
340
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 43
19
Strength to Weight: Bending, points 21 to 32
18
Thermal Diffusivity, mm2/s 13
7.7
Thermal Shock Resistance, points 20 to 38
20

Alloy Composition

Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0.48 to 0.53
0
Chromium (Cr), % 0.8 to 1.1
0
Copper (Cu), % 0
80 to 83
Iron (Fe), % 96.7 to 97.7
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.7 to 0.9
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
3.5 to 4.5
Sulfur (S), % 0 to 0.040
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
11.4 to 16.5
Residuals, % 0
0 to 0.5