SAE-AISI 81B45 Steel vs. AISI 414 Stainless Steel
Both SAE-AISI 81B45 steel and AISI 414 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 81B45 steel and the bottom bar is AISI 414 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 12 to 24 | |
17 |
Fatigue Strength, MPa | 250 to 350 | |
430 to 480 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
76 |
Shear Strength, MPa | 340 to 400 | |
550 to 590 |
Tensile Strength: Ultimate (UTS), MPa | 540 to 670 | |
900 to 960 |
Tensile Strength: Yield (Proof), MPa | 350 to 560 | |
700 to 790 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
280 |
Maximum Temperature: Mechanical, °C | 410 | |
750 |
Melting Completion (Liquidus), °C | 1460 | |
1440 |
Melting Onset (Solidus), °C | 1420 | |
1400 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 40 | |
25 |
Thermal Expansion, µm/m-K | 12 | |
10 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
2.5 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
2.9 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.3 | |
8.0 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
2.1 |
Embodied Energy, MJ/kg | 20 | |
29 |
Embodied Water, L/kg | 49 | |
100 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 77 to 110 | |
140 to 150 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 320 to 840 | |
1260 to 1590 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 19 to 24 | |
32 to 34 |
Strength to Weight: Bending, points | 19 to 22 | |
27 to 28 |
Thermal Diffusivity, mm2/s | 11 | |
6.7 |
Thermal Shock Resistance, points | 17 to 21 | |
33 to 35 |
Alloy Composition
Boron (B), % | 0.00050 to 0.0030 | |
0 |
Carbon (C), % | 0.43 to 0.48 | |
0 to 0.15 |
Chromium (Cr), % | 0.35 to 0.55 | |
11.5 to 13.5 |
Iron (Fe), % | 97 to 98 | |
81.8 to 87.3 |
Manganese (Mn), % | 0.75 to 1.0 | |
0 to 1.0 |
Molybdenum (Mo), % | 0.080 to 0.15 | |
0 |
Nickel (Ni), % | 0.2 to 0.4 | |
1.3 to 2.5 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.040 |
Silicon (Si), % | 0.15 to 0.35 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.040 | |
0 to 0.030 |