SAE-AISI 8620 Steel vs. EN 1.4005 Stainless Steel
Both SAE-AISI 8620 steel and EN 1.4005 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 8620 steel and the bottom bar is EN 1.4005 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 13 to 31 | |
13 to 21 |
Fatigue Strength, MPa | 270 to 360 | |
240 to 290 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
76 |
Shear Strength, MPa | 340 to 420 | |
390 to 450 |
Tensile Strength: Ultimate (UTS), MPa | 520 to 690 | |
630 to 750 |
Tensile Strength: Yield (Proof), MPa | 360 to 570 | |
370 to 500 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
270 |
Maximum Temperature: Mechanical, °C | 410 | |
760 |
Melting Completion (Liquidus), °C | 1460 | |
1440 |
Melting Onset (Solidus), °C | 1420 | |
1400 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 39 | |
30 |
Thermal Expansion, µm/m-K | 13 | |
10 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.3 | |
2.9 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
3.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.6 | |
7.0 |
Density, g/cm3 | 7.8 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
2.0 |
Embodied Energy, MJ/kg | 20 | |
28 |
Embodied Water, L/kg | 50 | |
100 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 86 to 150 | |
90 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 340 to 880 | |
350 to 650 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 18 to 24 | |
23 to 27 |
Strength to Weight: Bending, points | 18 to 22 | |
21 to 24 |
Thermal Diffusivity, mm2/s | 10 | |
8.1 |
Thermal Shock Resistance, points | 15 to 20 | |
23 to 27 |
Alloy Composition
Carbon (C), % | 0.18 to 0.23 | |
0.060 to 0.15 |
Chromium (Cr), % | 0.4 to 0.6 | |
12 to 14 |
Iron (Fe), % | 96.9 to 98 | |
82.4 to 87.8 |
Manganese (Mn), % | 0.7 to 0.9 | |
0 to 1.5 |
Molybdenum (Mo), % | 0.15 to 0.25 | |
0 to 0.6 |
Nickel (Ni), % | 0.4 to 0.7 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.040 |
Silicon (Si), % | 0.15 to 0.35 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.040 | |
0.15 to 0.35 |