SAE-AISI 8620 Steel vs. EN 1.5501 Steel
Both SAE-AISI 8620 steel and EN 1.5501 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 8620 steel and the bottom bar is EN 1.5501 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 150 to 210 | |
120 to 150 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 13 to 31 | |
12 to 17 |
Fatigue Strength, MPa | 270 to 360 | |
180 to 270 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Shear Strength, MPa | 340 to 420 | |
270 to 310 |
Tensile Strength: Ultimate (UTS), MPa | 520 to 690 | |
390 to 510 |
Tensile Strength: Yield (Proof), MPa | 360 to 570 | |
260 to 420 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 410 | |
400 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 39 | |
52 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.3 | |
7.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
8.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.6 | |
1.8 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
1.4 |
Embodied Energy, MJ/kg | 20 | |
18 |
Embodied Water, L/kg | 50 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 86 to 150 | |
40 to 83 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 340 to 880 | |
190 to 460 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 18 to 24 | |
14 to 18 |
Strength to Weight: Bending, points | 18 to 22 | |
15 to 18 |
Thermal Diffusivity, mm2/s | 10 | |
14 |
Thermal Shock Resistance, points | 15 to 20 | |
11 to 15 |
Alloy Composition
Boron (B), % | 0 | |
0.00080 to 0.0050 |
Carbon (C), % | 0.18 to 0.23 | |
0.13 to 0.16 |
Chromium (Cr), % | 0.4 to 0.6 | |
0 |
Copper (Cu), % | 0 | |
0 to 0.25 |
Iron (Fe), % | 96.9 to 98 | |
98.4 to 99.269 |
Manganese (Mn), % | 0.7 to 0.9 | |
0.6 to 0.8 |
Molybdenum (Mo), % | 0.15 to 0.25 | |
0 |
Nickel (Ni), % | 0.4 to 0.7 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.025 |
Silicon (Si), % | 0.15 to 0.35 | |
0 to 0.3 |
Sulfur (S), % | 0 to 0.040 | |
0 to 0.025 |