MakeItFrom.com
Menu (ESC)

SAE-AISI 8620 Steel vs. CC380H Copper-nickel

SAE-AISI 8620 steel belongs to the iron alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8620 steel and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 210
80
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 13 to 31
26
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
47
Tensile Strength: Ultimate (UTS), MPa 520 to 690
310
Tensile Strength: Yield (Proof), MPa 360 to 570
120

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 410
220
Melting Completion (Liquidus), °C 1460
1130
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
46
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
36
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.5
3.8
Embodied Energy, MJ/kg 20
58
Embodied Water, L/kg 50
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 150
65
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 880
59
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18 to 24
9.8
Strength to Weight: Bending, points 18 to 22
12
Thermal Diffusivity, mm2/s 10
13
Thermal Shock Resistance, points 15 to 20
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0.18 to 0.23
0
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0
84.5 to 89
Iron (Fe), % 96.9 to 98
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.7 to 0.9
1.0 to 1.5
Molybdenum (Mo), % 0.15 to 0.25
0
Nickel (Ni), % 0.4 to 0.7
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.5