SAE-AISI 8620 Steel vs. Grade 14 Titanium
SAE-AISI 8620 steel belongs to the iron alloys classification, while grade 14 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 8620 steel and the bottom bar is grade 14 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 13 to 31 | |
23 |
Fatigue Strength, MPa | 270 to 360 | |
220 |
Poisson's Ratio | 0.29 | |
0.32 |
Shear Modulus, GPa | 73 | |
41 |
Shear Strength, MPa | 340 to 420 | |
290 |
Tensile Strength: Ultimate (UTS), MPa | 520 to 690 | |
460 |
Tensile Strength: Yield (Proof), MPa | 360 to 570 | |
310 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
420 |
Maximum Temperature: Mechanical, °C | 410 | |
320 |
Melting Completion (Liquidus), °C | 1460 | |
1660 |
Melting Onset (Solidus), °C | 1420 | |
1610 |
Specific Heat Capacity, J/kg-K | 470 | |
540 |
Thermal Conductivity, W/m-K | 39 | |
21 |
Thermal Expansion, µm/m-K | 13 | |
8.7 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.3 | |
3.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
6.9 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.6 | |
37 |
Density, g/cm3 | 7.8 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
32 |
Embodied Energy, MJ/kg | 20 | |
520 |
Embodied Water, L/kg | 50 | |
210 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 86 to 150 | |
93 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 340 to 880 | |
450 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
35 |
Strength to Weight: Axial, points | 18 to 24 | |
28 |
Strength to Weight: Bending, points | 18 to 22 | |
29 |
Thermal Diffusivity, mm2/s | 10 | |
8.5 |
Thermal Shock Resistance, points | 15 to 20 | |
35 |
Alloy Composition
Carbon (C), % | 0.18 to 0.23 | |
0 to 0.080 |
Chromium (Cr), % | 0.4 to 0.6 | |
0 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 96.9 to 98 | |
0 to 0.3 |
Manganese (Mn), % | 0.7 to 0.9 | |
0 |
Molybdenum (Mo), % | 0.15 to 0.25 | |
0 |
Nickel (Ni), % | 0.4 to 0.7 | |
0.4 to 0.6 |
Nitrogen (N), % | 0 | |
0 to 0.030 |
Oxygen (O), % | 0 | |
0 to 0.15 |
Phosphorus (P), % | 0 to 0.035 | |
0 |
Ruthenium (Ru), % | 0 | |
0.040 to 0.060 |
Silicon (Si), % | 0.15 to 0.35 | |
0 |
Sulfur (S), % | 0 to 0.040 | |
0 |
Titanium (Ti), % | 0 | |
98.4 to 99.56 |
Residuals, % | 0 | |
0 to 0.4 |