MakeItFrom.com
Menu (ESC)

SAE-AISI 8620 Steel vs. C37700 Brass

SAE-AISI 8620 steel belongs to the iron alloys classification, while C37700 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8620 steel and the bottom bar is C37700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 13 to 31
40
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
39
Shear Strength, MPa 340 to 420
270
Tensile Strength: Ultimate (UTS), MPa 520 to 690
400
Tensile Strength: Yield (Proof), MPa 360 to 570
160

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 410
120
Melting Completion (Liquidus), °C 1460
890
Melting Onset (Solidus), °C 1420
880
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 39
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
27
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
30

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
23
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.5
2.6
Embodied Energy, MJ/kg 20
45
Embodied Water, L/kg 50
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 150
130
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 880
120
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18 to 24
14
Strength to Weight: Bending, points 18 to 22
15
Thermal Diffusivity, mm2/s 10
39
Thermal Shock Resistance, points 15 to 20
13

Alloy Composition

Carbon (C), % 0.18 to 0.23
0
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0
58 to 61
Iron (Fe), % 96.9 to 98
0 to 0.3
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0.7 to 0.9
0
Molybdenum (Mo), % 0.15 to 0.25
0
Nickel (Ni), % 0.4 to 0.7
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
35.7 to 40.5
Residuals, % 0
0 to 0.5