MakeItFrom.com
Menu (ESC)

SAE-AISI 8620 Steel vs. S41041 Stainless Steel

Both SAE-AISI 8620 steel and S41041 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8620 steel and the bottom bar is S41041 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 210
240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 13 to 31
17
Fatigue Strength, MPa 270 to 360
350
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 340 to 420
560
Tensile Strength: Ultimate (UTS), MPa 520 to 690
910
Tensile Strength: Yield (Proof), MPa 360 to 570
580

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 410
740
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
29
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
8.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
2.2
Embodied Energy, MJ/kg 20
31
Embodied Water, L/kg 50
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 150
140
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 880
860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18 to 24
32
Strength to Weight: Bending, points 18 to 22
27
Thermal Diffusivity, mm2/s 10
7.8
Thermal Shock Resistance, points 15 to 20
33

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0.18 to 0.23
0.13 to 0.18
Chromium (Cr), % 0.4 to 0.6
11.5 to 13
Iron (Fe), % 96.9 to 98
84.5 to 87.8
Manganese (Mn), % 0.7 to 0.9
0.4 to 0.6
Molybdenum (Mo), % 0.15 to 0.25
0 to 0.2
Nickel (Ni), % 0.4 to 0.7
0 to 0.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.030